Class AssociateHistoryRow
Historical information about associates that have been deleted. Most references are NOT declared as foreign keys; this is a historical table that should not be updated when further changes occur in the database
Row Object for table 'AssociateHistory'. Row objects correspond directly to database tables, and one
instance of a row object represents one row in the corresponding table in the database.
Inherited Members
Namespace: SuperOffice.CRM.Rows
Assembly: SoDataBase.dll
Syntax
public class AssociateHistoryRow : TableRowBase, INestedPersist, ISoDataLookup, ISentryIgnorable, ISoItem
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
Constructors
AssociateHistoryRow(AssociateHistoryRow.AssociateHistoryRowIdxBase)
Constructor for the class taking an index as argument. Historical information about associates that have been deleted. Most references are NOT declared as foreign keys; this is a historical table that should not be updated when further changes occur in the database
Declaration
protected AssociateHistoryRow(AssociateHistoryRow.AssociateHistoryRowIdxBase idx)
Parameters
Type | Name | Description |
---|---|---|
AssociateHistoryRow.AssociateHistoryRowIdxBase | idx | The index representing a SELECT command to the database. |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
Fields
_currentAssociateHistoryId
Current value, see property AssociateHistoryId.
Declaration
protected int _currentAssociateHistoryId
Field Value
Type | Description |
---|---|
Int32 |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_currentAssociateId
Current value, see property AssociateId.
Declaration
protected int _currentAssociateId
Field Value
Type | Description |
---|---|
Int32 |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_currentContactId
Current value, see property ContactId.
Declaration
protected int _currentContactId
Field Value
Type | Description |
---|---|
Int32 |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_currentEjUserId
Current value, see property EjUserId.
Declaration
protected int _currentEjUserId
Field Value
Type | Description |
---|---|
Int32 |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_currentFirstname
Current value, see property Firstname.
Declaration
protected string _currentFirstname
Field Value
Type | Description |
---|---|
String |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_currentGroupId
Current value, see property GroupId.
Declaration
protected int _currentGroupId
Field Value
Type | Description |
---|---|
Int32 |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_currentLastname
Current value, see property Lastname.
Declaration
protected string _currentLastname
Field Value
Type | Description |
---|---|
String |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_currentLocationAddress
Current value, see property LocationAddress.
Declaration
protected string _currentLocationAddress
Field Value
Type | Description |
---|---|
String |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_currentMiddleName
Current value, see property MiddleName.
Declaration
protected string _currentMiddleName
Field Value
Type | Description |
---|---|
String |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_currentName
Current value, see property Name.
Declaration
protected string _currentName
Field Value
Type | Description |
---|---|
String |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_currentOriginalRegistered
Current value, see property OriginalRegistered.
Declaration
protected DateTime _currentOriginalRegistered
Field Value
Type | Description |
---|---|
DateTime |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_currentPersonId
Current value, see property PersonId.
Declaration
protected int _currentPersonId
Field Value
Type | Description |
---|---|
Int32 |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_currentRegistered
Current value, see property Registered.
Declaration
protected DateTime _currentRegistered
Field Value
Type | Description |
---|---|
DateTime |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_currentRegisteredAssociateId
Current value, see property RegisteredAssociateId.
Declaration
protected int _currentRegisteredAssociateId
Field Value
Type | Description |
---|---|
Int32 |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_currentType
Current value, see property Type.
Declaration
protected AssociateType _currentType
Field Value
Type | Description |
---|---|
AssociateType |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_persistedAssociateHistoryId
Persisted value, see property AssociateHistoryId.
Declaration
protected int _persistedAssociateHistoryId
Field Value
Type | Description |
---|---|
Int32 |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_persistedAssociateId
Persisted value, see property AssociateId.
Declaration
protected int _persistedAssociateId
Field Value
Type | Description |
---|---|
Int32 |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_persistedContactId
Persisted value, see property ContactId.
Declaration
protected int _persistedContactId
Field Value
Type | Description |
---|---|
Int32 |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_persistedEjUserId
Persisted value, see property EjUserId.
Declaration
protected int _persistedEjUserId
Field Value
Type | Description |
---|---|
Int32 |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_persistedFirstname
Persisted value, see property Firstname.
Declaration
protected string _persistedFirstname
Field Value
Type | Description |
---|---|
String |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_persistedGroupId
Persisted value, see property GroupId.
Declaration
protected int _persistedGroupId
Field Value
Type | Description |
---|---|
Int32 |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_persistedLastname
Persisted value, see property Lastname.
Declaration
protected string _persistedLastname
Field Value
Type | Description |
---|---|
String |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_persistedLocationAddress
Persisted value, see property LocationAddress.
Declaration
protected string _persistedLocationAddress
Field Value
Type | Description |
---|---|
String |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_persistedMiddleName
Persisted value, see property MiddleName.
Declaration
protected string _persistedMiddleName
Field Value
Type | Description |
---|---|
String |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_persistedName
Persisted value, see property Name.
Declaration
protected string _persistedName
Field Value
Type | Description |
---|---|
String |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_persistedOriginalRegistered
Persisted value, see property OriginalRegistered.
Declaration
protected DateTime _persistedOriginalRegistered
Field Value
Type | Description |
---|---|
DateTime |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_persistedPersonId
Persisted value, see property PersonId.
Declaration
protected int _persistedPersonId
Field Value
Type | Description |
---|---|
Int32 |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_persistedRegistered
Persisted value, see property Registered.
Declaration
protected DateTime _persistedRegistered
Field Value
Type | Description |
---|---|
DateTime |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_persistedRegisteredAssociateId
Persisted value, see property RegisteredAssociateId.
Declaration
protected int _persistedRegisteredAssociateId
Field Value
Type | Description |
---|---|
Int32 |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_persistedType
Persisted value, see property Type.
Declaration
protected AssociateType _persistedType
Field Value
Type | Description |
---|---|
AssociateType |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
Properties
AssociateHistoryId
.NET type: int. Primary key
Declaration
public virtual int AssociateHistoryId { get; }
Property Value
Type | Description |
---|---|
Int32 |
Remarks
Original type in dictionary: PK.
This field is the primary key and can only be read, never written.
This field is not protected by the Sentry system, and can always be read
AssociateHistoryTableInfo
Get the AssociateHistoryTableInfo object associated with the row.
Declaration
public AssociateHistoryTableInfo AssociateHistoryTableInfo { get; }
Property Value
Type | Description |
---|---|
AssociateHistoryTableInfo |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
AssociateId
.NET type: int. The original primary key of the deleted associate
Declaration
public virtual int AssociateId { get; set; }
Property Value
Type | Description |
---|---|
Int32 |
Remarks
Original type in dictionary: Int.
Setting this field to a new value will not affect the Sentry calculations and your rights
This field is not protected by the Sentry system, and can always be read
This field is not protected by the Sentry system, and can be written to unless other restrictions prevent it
ContactId
.NET type: int. The original contact_id
Declaration
public virtual int ContactId { get; set; }
Property Value
Type | Description |
---|---|
Int32 |
Remarks
Original type in dictionary: Int.
Setting this field to a new value will not affect the Sentry calculations and your rights
This field is not protected by the Sentry system, and can always be read
This field is not protected by the Sentry system, and can be written to unless other restrictions prevent it
EjUserId
.NET type: int. The ejuser reference, if any
Declaration
public virtual int EjUserId { get; set; }
Property Value
Type | Description |
---|---|
Int32 |
Remarks
Original type in dictionary: Int.
Setting this field to a new value will not affect the Sentry calculations and your rights
This field is not protected by the Sentry system, and can always be read
This field is not protected by the Sentry system, and can be written to unless other restrictions prevent it
Firstname
.NET type: string. First name
Declaration
public virtual string Firstname { get; set; }
Property Value
Type | Description |
---|---|
String |
Remarks
Original type in dictionary: String[100].
Setting this field to a new value will not affect the Sentry calculations and your rights
This field is not protected by the Sentry system, and can always be read
This field is not protected by the Sentry system, and can be written to unless other restrictions prevent it
GroupId
.NET type: int. The group id
Declaration
public virtual int GroupId { get; set; }
Property Value
Type | Description |
---|---|
Int32 |
Remarks
Original type in dictionary: Int.
Setting this field to a new value will not affect the Sentry calculations and your rights
This field is not protected by the Sentry system, and can always be read
This field is not protected by the Sentry system, and can be written to unless other restrictions prevent it
InnerFieldValuePairs
The values of all the fields in the row.
The first field is the primary key.
The index of the value corresponds to the name
of the field returned from the Fields property.
Declaration
protected override ArgumentParameterCollection InnerFieldValuePairs { get; }
Property Value
Type | Description |
---|---|
ArgumentParameterCollection |
Overrides
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
InnerPrimaryKey
The primary key needed to decide which specific row to alter with the current sql-command.
Declaration
protected override FieldInfo InnerPrimaryKey { get; }
Property Value
Type | Description |
---|---|
FieldInfo |
Overrides
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
InnerPrimaryKeyValue
The actual value the primary key must have.
Declaration
protected override Parameter InnerPrimaryKeyValue { get; }
Property Value
Type | Description |
---|---|
Parameter |
Overrides
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
IsDirty
Is the row dirty, e.g. been modified since the last time it was saved to the database.
Declaration
public override bool IsDirty { get; }
Property Value
Type | Description |
---|---|
Boolean |
Overrides
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
IsNew
Is this object new, meaning that it does not exist in the database.
Declaration
public override bool IsNew { get; }
Property Value
Type | Description |
---|---|
Boolean |
Overrides
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
Item[String]
Get or set a value based on the name of the field.
Declaration
public override object this[string fieldName] { get; set; }
Parameters
Type | Name | Description |
---|---|---|
String | fieldName | Name of the field in the database |
Property Value
Type | Description |
---|---|
Object | Value of the field. |
Overrides
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
Exceptions
Type | Condition |
---|---|
ArgumentException | Thrown if the field is not known. |
Lastname
.NET type: string. Last name
Declaration
public virtual string Lastname { get; set; }
Property Value
Type | Description |
---|---|
String |
Remarks
Original type in dictionary: String[100].
Setting this field to a new value will not affect the Sentry calculations and your rights
This field is not protected by the Sentry system, and can always be read
This field is not protected by the Sentry system, and can be written to unless other restrictions prevent it
LocationAddress
.NET type: string. Address of location, if this is a resource that is a location
Declaration
public virtual string LocationAddress { get; set; }
Property Value
Type | Description |
---|---|
String |
Remarks
Original type in dictionary: String[240].
Setting this field to a new value will not affect the Sentry calculations and your rights
This field is not protected by the Sentry system, and can always be read
This field is not protected by the Sentry system, and can be written to unless other restrictions prevent it
MiddleName
.NET type: string. Middle name or 'van' etc.
Declaration
public virtual string MiddleName { get; set; }
Property Value
Type | Description |
---|---|
String |
Remarks
Original type in dictionary: String[100].
Setting this field to a new value will not affect the Sentry calculations and your rights
This field is not protected by the Sentry system, and can always be read
This field is not protected by the Sentry system, and can be written to unless other restrictions prevent it
Name
.NET type: string. The associate name/initials
Declaration
public virtual string Name { get; set; }
Property Value
Type | Description |
---|---|
String |
Remarks
Original type in dictionary: String[256].
Setting this field to a new value will not affect the Sentry calculations and your rights
This field is not protected by the Sentry system, and can always be read
This field is not protected by the Sentry system, and can be written to unless other restrictions prevent it
OriginalRegistered
.NET type: DateTime. Registered when in UTC
Declaration
public virtual DateTime OriginalRegistered { get; set; }
Property Value
Type | Description |
---|---|
DateTime |
Remarks
Original type in dictionary: UtcDateTime.
Setting this field to a new value will not affect the Sentry calculations and your rights
This field is not protected by the Sentry system, and can always be read
This field is not protected by the Sentry system, and can be written to unless other restrictions prevent it
PersonId
.NET type: int. The person id
Declaration
public virtual int PersonId { get; set; }
Property Value
Type | Description |
---|---|
Int32 |
Remarks
Original type in dictionary: Int.
Setting this field to a new value will not affect the Sentry calculations and your rights
This field is not protected by the Sentry system, and can always be read
This field is not protected by the Sentry system, and can be written to unless other restrictions prevent it
Registered
.NET type: DateTime. Registered when in UTC
Declaration
public virtual DateTime Registered { get; set; }
Property Value
Type | Description |
---|---|
DateTime |
Remarks
Original type in dictionary: UtcDateTime.
Setting this field to a new value will not affect the Sentry calculations and your rights
This field is not protected by the Sentry system, and can always be read
This field is not protected by the Sentry system, and can be written to unless other restrictions prevent it
RegisteredAssociateId
.NET type: int. Registered by whom
Declaration
public virtual int RegisteredAssociateId { get; set; }
Property Value
Type | Description |
---|---|
Int32 |
Remarks
Original type in dictionary: FK.
Setting this field to a new value will not affect the Sentry calculations and your rights
This field is not protected by the Sentry system, and can always be read
This field is not protected by the Sentry system, and can be written to unless other restrictions prevent it
TableInfo
Get the TableInfo for the table.
Declaration
public override TableInfo TableInfo { get; }
Property Value
Type | Description |
---|---|
TableInfo | The TableInfo for the table. |
Overrides
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
Type
.NET type: AssociateType. Associate type
Declaration
public virtual AssociateType Type { get; set; }
Property Value
Type | Description |
---|---|
AssociateType |
Remarks
Original type in dictionary: Enum.
Setting this field to a new value will not affect the Sentry calculations and your rights
This field is not protected by the Sentry system, and can always be read
This field is not protected by the Sentry system, and can be written to unless other restrictions prevent it
Methods
CreateNew()
Create a new instance of the AssociateHistoryRow object. Historical information about associates that have been deleted. Most references are NOT declared as foreign keys; this is a historical table that should not be updated when further changes occur in the database
Declaration
public static AssociateHistoryRow CreateNew()
Returns
Type | Description |
---|---|
AssociateHistoryRow | A new instance of the AssociateHistoryRow object. |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
GetFromCustomSearch(AssociateHistoryRow.CustomSearch)
Create a new instance of the AssociateHistoryRow object, and populate it with data from a custom search. If the search returns no results, an object with IsNew will be returned; if the result contains one row, an object representing that row will be returned. If the result contains more than one row, the first row will be used and the rest discarded (there is no way of detecting this situation).
Declaration
public static AssociateHistoryRow GetFromCustomSearch(AssociateHistoryRow.CustomSearch query)
Parameters
Type | Name | Description |
---|---|---|
AssociateHistoryRow.CustomSearch | query | The custom search to execute against the database |
Returns
Type | Description |
---|---|
AssociateHistoryRow | A new instance of the AssociateHistoryRow object, reflecting the result of the query. |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
GetFromIdxAssociateHistoryId(Int32)
Create a new instance of the AssociateHistoryRow object, by querying the database table via the index 'IDXAssociateHistoryId'. This method is intended to make it easy to use efficient queries that match a database index.
Declaration
public static AssociateHistoryRow GetFromIdxAssociateHistoryId(int associateHistoryId)
Parameters
Type | Name | Description |
---|---|---|
Int32 | associateHistoryId |
Returns
Type | Description |
---|---|
AssociateHistoryRow | Row object that represents the result of the search. IsNew will be true if the query did not match any row in the table |
Remarks
This method represents one of the unique indexes on the AssociateHistory table. Non-unique indexes have corresponding inner classes and methods in the AssociateHistoryRows collection, since they may return more than one row.
GetFromReader(SoDataReader, AssociateHistoryTableInfo)
Create a new instance of the AssociateHistoryRow object, and populate it with data from a reader/tableinfo. If the reader has DBNull as the current value of the primary key field, an unpopulated object with IsNew == true will be returned. If any fields are missing or one of the non-primary key fields is DBNull, an exception will be thrown. Historical information about associates that have been deleted. Most references are NOT declared as foreign keys; this is a historical table that should not be updated when further changes occur in the database
Declaration
public static AssociateHistoryRow GetFromReader(SoDataReader reader, AssociateHistoryTableInfo tableInfo)
Parameters
Type | Name | Description |
---|---|---|
SoDataReader | reader | SoDataReader positioned to a valid database row. |
AssociateHistoryTableInfo | tableInfo | AssociateHistoryTableInfo instance used in the query that is the source of the reader. The fields used from the reader will be those owned by this tableinfo object. |
Returns
Type | Description |
---|---|
AssociateHistoryRow | A new instance of the AssociateHistoryRow object. |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
GetPersistedFieldValue(FieldInfo)
Get the persisted value of a field.
Declaration
public override object GetPersistedFieldValue(FieldInfo field)
Parameters
Type | Name | Description |
---|---|---|
FieldInfo | field | Specification of a field |
Returns
Type | Description |
---|---|
Object | Field value, such as an int, DateTime, string ... Null can be returned if the value is not known. |
Overrides
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
Exceptions
Type | Condition |
---|---|
ArgumentException | Thrown if the field is not known. |
InternalSetValue(String, Object)
Historical information about associates that have been deleted. Most references are NOT declared as foreign keys; this is a historical table that should not be updated when further changes occur in the database
Row Object for table 'AssociateHistory'. Row objects correspond directly to database tables, and one
instance of a row object represents one row in the corresponding table in the database.
Declaration
protected override void InternalSetValue(string fieldName, object value)
Parameters
Type | Name | Description |
---|---|---|
String | fieldName | |
Object | value |
Overrides
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
IsPersistedFieldValueKnown(FieldInfo)
Check if the persisted value for a field is known.
Declaration
public override bool IsPersistedFieldValueKnown(FieldInfo field)
Parameters
Type | Name | Description |
---|---|---|
FieldInfo | field | Specification of a field |
Returns
Type | Description |
---|---|
Boolean | True if the value is known and sentry permits read. |
Overrides
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
OnLoad(SoDataReader, TableInfo)
Fill the object with data returned from the database.
Declaration
protected override void OnLoad(SoDataReader reader, TableInfo tableInfo)
Parameters
Type | Name | Description |
---|---|---|
SoDataReader | reader | Object holding the data returned from the database. |
TableInfo | tableInfo | The TableInfo used for the SELECT statement. |
Overrides
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
OnSave(BatchSave)
Add the object to the BatchSave list if it needs saving.
Declaration
protected override void OnSave(BatchSave batchSave)
Parameters
Type | Name | Description |
---|---|---|
BatchSave | batchSave | Collection of objects to be saved within the transaction. |
Overrides
Remarks
Classes overriding this method should call it.
OnSaved(Boolean)
Method called after the save operation has been performed.
Declaration
protected override void OnSaved(bool bSucceeded)
Parameters
Type | Name | Description |
---|---|---|
Boolean | bSucceeded | True if the save operation succeeded (e.g. transaction committed), or false if the save operation failed (e.g. transaction rolled back) |
Overrides
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
Reset()
Reset the changes made on the object.
Declaration
protected override void Reset()
Overrides
Remarks
If the row is not persisted to the database (e.g. IsNew is true), all the values will be reset. If the row has been persisted to or loaded from the database, the properties will be set to those of the last persisted or loaded values.
SetDefaults(DefaulterStrategy)
Set default values for the row.
Declaration
public override void SetDefaults(DefaulterStrategy strategy)
Parameters
Type | Name | Description |
---|---|---|
DefaulterStrategy | strategy | Strategy used when applying default values; values depend on where we are in the Create/Fetch/Populate/Save cycle |
Overrides
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
SetPrimaryKey(Int32)
Set the primary key for the row.
Declaration
protected override void SetPrimaryKey(int primaryKey)
Parameters
Type | Name | Description |
---|---|---|
Int32 | primaryKey | The new primary key for the row. |
Overrides
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
SetRowAsNew()
Historical information about associates that have been deleted. Most references are NOT declared as foreign keys; this is a historical table that should not be updated when further changes occur in the database
Row Object for table 'AssociateHistory'. Row objects correspond directly to database tables, and one
instance of a row object represents one row in the corresponding table in the database.
Declaration
public override void SetRowAsNew()
Overrides
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
ToString()
ToString method intended for debugging, returns a string that displays the object type, new/dirty status, primary key and the string fields
Declaration
public override string ToString()
Returns
Type | Description |
---|---|
String |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
Validate(RowValidator)
Validate this row.
Declaration
public override void Validate(RowValidator rowValidator)
Parameters
Type | Name | Description |
---|---|---|
RowValidator | rowValidator | RowValidator for inserting the result of the validation |
Overrides
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) AssociateHistoryRow AssociateHistoryRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(AssociateHistoryRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the AssociateHistoryTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, AssociateHistoryTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|