Class LogEventsRow
System log
Row Object for table 'log_events'. Row objects correspond directly to database tables, and one
instance of a row object represents one row in the corresponding table in the database.
Inherited Members
Namespace: SuperOffice.CRM.Rows
Assembly: SoDataBase.dll
Syntax
public class LogEventsRow : TableRowBase, INestedPersist, ISoDataLookup, ISentryIgnorable, ISoItem
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
Constructors
LogEventsRow(LogEventsRow.LogEventsRowIdxBase)
Constructor for the class taking an index as argument. System log
Declaration
protected LogEventsRow(LogEventsRow.LogEventsRowIdxBase idx)
Parameters
Type | Name | Description |
---|---|---|
LogEventsRow.LogEventsRowIdxBase | idx | The index representing a SELECT command to the database. |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
Fields
_currentEventGroup
Current value, see property EventGroup.
Declaration
protected int _currentEventGroup
Field Value
Type | Description |
---|---|
Int32 |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_currentEventId
Current value, see property EventId.
Declaration
protected int _currentEventId
Field Value
Type | Description |
---|---|
Int32 |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_currentEventType
Current value, see property EventType.
Declaration
protected int _currentEventType
Field Value
Type | Description |
---|---|
Int32 |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_currentLogEventsId
Current value, see property LogEventsId.
Declaration
protected int _currentLogEventsId
Field Value
Type | Description |
---|---|
Int32 |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_currentSourceUser
Current value, see property SourceUser.
Declaration
protected int _currentSourceUser
Field Value
Type | Description |
---|---|
Int32 |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_currentSourceUserDesc
Current value, see property SourceUserDesc.
Declaration
protected string _currentSourceUserDesc
Field Value
Type | Description |
---|---|
String |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_currentTargetId
Current value, see property TargetId.
Declaration
protected int _currentTargetId
Field Value
Type | Description |
---|---|
Int32 |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_currentTimeOfEvent
Current value, see property TimeOfEvent.
Declaration
protected DateTime _currentTimeOfEvent
Field Value
Type | Description |
---|---|
DateTime |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_currentVar1
Current value, see property Var1.
Declaration
protected string _currentVar1
Field Value
Type | Description |
---|---|
String |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_currentVar2
Current value, see property Var2.
Declaration
protected string _currentVar2
Field Value
Type | Description |
---|---|
String |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_currentVar3
Current value, see property Var3.
Declaration
protected string _currentVar3
Field Value
Type | Description |
---|---|
String |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_currentVar4
Current value, see property Var4.
Declaration
protected string _currentVar4
Field Value
Type | Description |
---|---|
String |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_currentVar5
Current value, see property Var5.
Declaration
protected string _currentVar5
Field Value
Type | Description |
---|---|
String |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_persistedEventGroup
Persisted value, see property EventGroup.
Declaration
protected int _persistedEventGroup
Field Value
Type | Description |
---|---|
Int32 |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_persistedEventId
Persisted value, see property EventId.
Declaration
protected int _persistedEventId
Field Value
Type | Description |
---|---|
Int32 |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_persistedEventType
Persisted value, see property EventType.
Declaration
protected int _persistedEventType
Field Value
Type | Description |
---|---|
Int32 |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_persistedLogEventsId
Persisted value, see property LogEventsId.
Declaration
protected int _persistedLogEventsId
Field Value
Type | Description |
---|---|
Int32 |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_persistedSourceUser
Persisted value, see property SourceUser.
Declaration
protected int _persistedSourceUser
Field Value
Type | Description |
---|---|
Int32 |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_persistedSourceUserDesc
Persisted value, see property SourceUserDesc.
Declaration
protected string _persistedSourceUserDesc
Field Value
Type | Description |
---|---|
String |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_persistedTargetId
Persisted value, see property TargetId.
Declaration
protected int _persistedTargetId
Field Value
Type | Description |
---|---|
Int32 |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_persistedTimeOfEvent
Persisted value, see property TimeOfEvent.
Declaration
protected DateTime _persistedTimeOfEvent
Field Value
Type | Description |
---|---|
DateTime |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_persistedVar1
Persisted value, see property Var1.
Declaration
protected string _persistedVar1
Field Value
Type | Description |
---|---|
String |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_persistedVar2
Persisted value, see property Var2.
Declaration
protected string _persistedVar2
Field Value
Type | Description |
---|---|
String |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_persistedVar3
Persisted value, see property Var3.
Declaration
protected string _persistedVar3
Field Value
Type | Description |
---|---|
String |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_persistedVar4
Persisted value, see property Var4.
Declaration
protected string _persistedVar4
Field Value
Type | Description |
---|---|
String |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
_persistedVar5
Persisted value, see property Var5.
Declaration
protected string _persistedVar5
Field Value
Type | Description |
---|---|
String |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
Properties
EventGroup
.NET type: int. See NewLog::EventGroup
Declaration
public virtual int EventGroup { get; set; }
Property Value
Type | Description |
---|---|
Int32 |
Remarks
Original type in dictionary: Int.
Setting this field to a new value will not affect the Sentry calculations and your rights
This field is not protected by the Sentry system, and can always be read
This field is not protected by the Sentry system, and can be written to unless other restrictions prevent it
EventId
.NET type: int. See NewLog::EventId
Declaration
public virtual int EventId { get; set; }
Property Value
Type | Description |
---|---|
Int32 |
Remarks
Original type in dictionary: Int.
Setting this field to a new value will not affect the Sentry calculations and your rights
This field is not protected by the Sentry system, and can always be read
This field is not protected by the Sentry system, and can be written to unless other restrictions prevent it
EventType
.NET type: int. Notification=1, warning=2, error=3, critical error=4
Declaration
public virtual int EventType { get; set; }
Property Value
Type | Description |
---|---|
Int32 |
Remarks
Original type in dictionary: Int.
Setting this field to a new value will not affect the Sentry calculations and your rights
This field is not protected by the Sentry system, and can always be read
This field is not protected by the Sentry system, and can be written to unless other restrictions prevent it
InnerFieldValuePairs
The values of all the fields in the row.
The first field is the primary key.
The index of the value corresponds to the name
of the field returned from the Fields property.
Declaration
protected override ArgumentParameterCollection InnerFieldValuePairs { get; }
Property Value
Type | Description |
---|---|
ArgumentParameterCollection |
Overrides
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
InnerPrimaryKey
The primary key needed to decide which specific row to alter with the current sql-command.
Declaration
protected override FieldInfo InnerPrimaryKey { get; }
Property Value
Type | Description |
---|---|
FieldInfo |
Overrides
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
InnerPrimaryKeyValue
The actual value the primary key must have.
Declaration
protected override Parameter InnerPrimaryKeyValue { get; }
Property Value
Type | Description |
---|---|
Parameter |
Overrides
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
IsDirty
Is the row dirty, e.g. been modified since the last time it was saved to the database.
Declaration
public override bool IsDirty { get; }
Property Value
Type | Description |
---|---|
Boolean |
Overrides
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
IsNew
Is this object new, meaning that it does not exist in the database.
Declaration
public override bool IsNew { get; }
Property Value
Type | Description |
---|---|
Boolean |
Overrides
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
Item[String]
Get or set a value based on the name of the field.
Declaration
public override object this[string fieldName] { get; set; }
Parameters
Type | Name | Description |
---|---|---|
String | fieldName | Name of the field in the database |
Property Value
Type | Description |
---|---|
Object | Value of the field. |
Overrides
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
Exceptions
Type | Condition |
---|---|
ArgumentException | Thrown if the field is not known. |
LogEventsId
.NET type: int. Primary key
Declaration
public virtual int LogEventsId { get; }
Property Value
Type | Description |
---|---|
Int32 |
Remarks
Original type in dictionary: PK.
This field is the primary key and can only be read, never written.
This field is not protected by the Sentry system, and can always be read
LogEventsTableInfo
Get the LogEventsTableInfo object associated with the row.
Declaration
public LogEventsTableInfo LogEventsTableInfo { get; }
Property Value
Type | Description |
---|---|
LogEventsTableInfo |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
SourceUser
.NET type: int. The user generating the event. 1=system, other=ejuser.id
Declaration
public virtual int SourceUser { get; set; }
Property Value
Type | Description |
---|---|
Int32 |
Remarks
Original type in dictionary: Int.
Setting this field to a new value will not affect the Sentry calculations and your rights
This field is not protected by the Sentry system, and can always be read
This field is not protected by the Sentry system, and can be written to unless other restrictions prevent it
SourceUserDesc
.NET type: string. Describing the id in source_user. eg user name or customer name or (System)
Declaration
public virtual string SourceUserDesc { get; set; }
Property Value
Type | Description |
---|---|
String |
Remarks
Original type in dictionary: Clob.
Setting this field to a new value will not affect the Sentry calculations and your rights
This field is not protected by the Sentry system, and can always be read
This field is not protected by the Sentry system, and can be written to unless other restrictions prevent it
TableInfo
Get the TableInfo for the table.
Declaration
public override TableInfo TableInfo { get; }
Property Value
Type | Description |
---|---|
TableInfo | The TableInfo for the table. |
Overrides
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
TargetId
.NET type: int. The id of the target entity (ticket.id, customer.id etc)
Declaration
public virtual int TargetId { get; set; }
Property Value
Type | Description |
---|---|
Int32 |
Remarks
Original type in dictionary: Int.
Setting this field to a new value will not affect the Sentry calculations and your rights
This field is not protected by the Sentry system, and can always be read
This field is not protected by the Sentry system, and can be written to unless other restrictions prevent it
TimeOfEvent
.NET type: DateTime. When did the event take place
Declaration
public virtual DateTime TimeOfEvent { get; set; }
Property Value
Type | Description |
---|---|
DateTime |
Remarks
Original type in dictionary: DateTime.
Setting this field to a new value will not affect the Sentry calculations and your rights
This field is not protected by the Sentry system, and can always be read
This field is not protected by the Sentry system, and can be written to unless other restrictions prevent it
Var1
.NET type: string. Dynamic info
Declaration
public virtual string Var1 { get; set; }
Property Value
Type | Description |
---|---|
String |
Remarks
Original type in dictionary: Clob.
Setting this field to a new value will not affect the Sentry calculations and your rights
This field is not protected by the Sentry system, and can always be read
This field is not protected by the Sentry system, and can be written to unless other restrictions prevent it
Var2
.NET type: string. Dynamic info
Declaration
public virtual string Var2 { get; set; }
Property Value
Type | Description |
---|---|
String |
Remarks
Original type in dictionary: Clob.
Setting this field to a new value will not affect the Sentry calculations and your rights
This field is not protected by the Sentry system, and can always be read
This field is not protected by the Sentry system, and can be written to unless other restrictions prevent it
Var3
.NET type: string. Dynamic info
Declaration
public virtual string Var3 { get; set; }
Property Value
Type | Description |
---|---|
String |
Remarks
Original type in dictionary: Clob.
Setting this field to a new value will not affect the Sentry calculations and your rights
This field is not protected by the Sentry system, and can always be read
This field is not protected by the Sentry system, and can be written to unless other restrictions prevent it
Var4
.NET type: string. Dynamic info
Declaration
public virtual string Var4 { get; set; }
Property Value
Type | Description |
---|---|
String |
Remarks
Original type in dictionary: Clob.
Setting this field to a new value will not affect the Sentry calculations and your rights
This field is not protected by the Sentry system, and can always be read
This field is not protected by the Sentry system, and can be written to unless other restrictions prevent it
Var5
.NET type: string. Dynamic info
Declaration
public virtual string Var5 { get; set; }
Property Value
Type | Description |
---|---|
String |
Remarks
Original type in dictionary: Clob.
Setting this field to a new value will not affect the Sentry calculations and your rights
This field is not protected by the Sentry system, and can always be read
This field is not protected by the Sentry system, and can be written to unless other restrictions prevent it
Methods
CreateNew()
Create a new instance of the LogEventsRow object. System log
Declaration
public static LogEventsRow CreateNew()
Returns
Type | Description |
---|---|
LogEventsRow | A new instance of the LogEventsRow object. |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
GetFromCustomSearch(LogEventsRow.CustomSearch)
Create a new instance of the LogEventsRow object, and populate it with data from a custom search. If the search returns no results, an object with IsNew will be returned; if the result contains one row, an object representing that row will be returned. If the result contains more than one row, the first row will be used and the rest discarded (there is no way of detecting this situation).
Declaration
public static LogEventsRow GetFromCustomSearch(LogEventsRow.CustomSearch query)
Parameters
Type | Name | Description |
---|---|---|
LogEventsRow.CustomSearch | query | The custom search to execute against the database |
Returns
Type | Description |
---|---|
LogEventsRow | A new instance of the LogEventsRow object, reflecting the result of the query. |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
GetFromIdxLogEventsId(Int32)
Create a new instance of the LogEventsRow object, by querying the database table via the index 'IDXLog_eventsId'. This method is intended to make it easy to use efficient queries that match a database index.
Declaration
public static LogEventsRow GetFromIdxLogEventsId(int logEventsId)
Parameters
Type | Name | Description |
---|---|---|
Int32 | logEventsId |
Returns
Type | Description |
---|---|
LogEventsRow | Row object that represents the result of the search. IsNew will be true if the query did not match any row in the table |
Remarks
This method represents one of the unique indexes on the LogEvents table. Non-unique indexes have corresponding inner classes and methods in the LogEventsRows collection, since they may return more than one row.
GetFromReader(SoDataReader, LogEventsTableInfo)
Create a new instance of the LogEventsRow object, and populate it with data from a reader/tableinfo. If the reader has DBNull as the current value of the primary key field, an unpopulated object with IsNew == true will be returned. If any fields are missing or one of the non-primary key fields is DBNull, an exception will be thrown. System log
Declaration
public static LogEventsRow GetFromReader(SoDataReader reader, LogEventsTableInfo tableInfo)
Parameters
Type | Name | Description |
---|---|---|
SoDataReader | reader | SoDataReader positioned to a valid database row. |
LogEventsTableInfo | tableInfo | LogEventsTableInfo instance used in the query that is the source of the reader. The fields used from the reader will be those owned by this tableinfo object. |
Returns
Type | Description |
---|---|
LogEventsRow | A new instance of the LogEventsRow object. |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
GetPersistedFieldValue(FieldInfo)
Get the persisted value of a field.
Declaration
public override object GetPersistedFieldValue(FieldInfo field)
Parameters
Type | Name | Description |
---|---|---|
FieldInfo | field | Specification of a field |
Returns
Type | Description |
---|---|
Object | Field value, such as an int, DateTime, string ... Null can be returned if the value is not known. |
Overrides
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
Exceptions
Type | Condition |
---|---|
ArgumentException | Thrown if the field is not known. |
InternalSetValue(String, Object)
System log
Row Object for table 'log_events'. Row objects correspond directly to database tables, and one
instance of a row object represents one row in the corresponding table in the database.
Declaration
protected override void InternalSetValue(string fieldName, object value)
Parameters
Type | Name | Description |
---|---|---|
String | fieldName | |
Object | value |
Overrides
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
IsPersistedFieldValueKnown(FieldInfo)
Check if the persisted value for a field is known.
Declaration
public override bool IsPersistedFieldValueKnown(FieldInfo field)
Parameters
Type | Name | Description |
---|---|---|
FieldInfo | field | Specification of a field |
Returns
Type | Description |
---|---|
Boolean | True if the value is known and sentry permits read. |
Overrides
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
OnLoad(SoDataReader, TableInfo)
Fill the object with data returned from the database.
Declaration
protected override void OnLoad(SoDataReader reader, TableInfo tableInfo)
Parameters
Type | Name | Description |
---|---|---|
SoDataReader | reader | Object holding the data returned from the database. |
TableInfo | tableInfo | The TableInfo used for the SELECT statement. |
Overrides
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
OnSave(BatchSave)
Add the object to the BatchSave list if it needs saving.
Declaration
protected override void OnSave(BatchSave batchSave)
Parameters
Type | Name | Description |
---|---|---|
BatchSave | batchSave | Collection of objects to be saved within the transaction. |
Overrides
Remarks
Classes overriding this method should call it.
OnSaved(Boolean)
Method called after the save operation has been performed.
Declaration
protected override void OnSaved(bool bSucceeded)
Parameters
Type | Name | Description |
---|---|---|
Boolean | bSucceeded | True if the save operation succeeded (e.g. transaction committed), or false if the save operation failed (e.g. transaction rolled back) |
Overrides
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
Reset()
Reset the changes made on the object.
Declaration
protected override void Reset()
Overrides
Remarks
If the row is not persisted to the database (e.g. IsNew is true), all the values will be reset. If the row has been persisted to or loaded from the database, the properties will be set to those of the last persisted or loaded values.
SetDefaults(DefaulterStrategy)
Set default values for the row.
Declaration
public override void SetDefaults(DefaulterStrategy strategy)
Parameters
Type | Name | Description |
---|---|---|
DefaulterStrategy | strategy | Strategy used when applying default values; values depend on where we are in the Create/Fetch/Populate/Save cycle |
Overrides
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
SetPrimaryKey(Int32)
Set the primary key for the row.
Declaration
protected override void SetPrimaryKey(int primaryKey)
Parameters
Type | Name | Description |
---|---|---|
Int32 | primaryKey | The new primary key for the row. |
Overrides
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
SetRowAsNew()
System log
Row Object for table 'log_events'. Row objects correspond directly to database tables, and one
instance of a row object represents one row in the corresponding table in the database.
Declaration
public override void SetRowAsNew()
Overrides
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
ToString()
ToString method intended for debugging, returns a string that displays the object type, new/dirty status, primary key and the string fields
Declaration
public override string ToString()
Returns
Type | Description |
---|---|
String |
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|
Validate(RowValidator)
Validate this row.
Declaration
public override void Validate(RowValidator rowValidator)
Parameters
Type | Name | Description |
---|---|---|
RowValidator | rowValidator | RowValidator for inserting the result of the validation |
Overrides
Remarks
Row objects can be created in several ways.
- Use the static CreateNew() method to create a new, empty object. After populating it with values,
you call the
method and a corresponding row in the database is created, and the objects' primary key field updated. This is the preferred way to insert new rows into the database. - You can create a (nested) LogEventsRow LogEventsRow.CustomSearch object to obtain a query pre-populated with the correct tableinfo and return fields. This query can be modified with restrictions, etc. Then, use the static GetFromCustomSearch(LogEventsRow.CustomSearch) method to apply the query to the database and obtain the result as a Row object. This is how you select existing rows from the database when you have a query that does not correspond to any of the existing database indexes.
- For each unique index defined for the table, there is a corresponding GetFromIdx method to make retrieving data via the indexes easy.
Note that if you try to fetch a row that does not exist (for instance, by using the primary key index and specifying a primary key that does
not exist in the database), you will get a Row object with the
and properties set to true. Such a Row object is called a 'ghost' and cannot be updated, saved or deleted. You can also get a ghost if the row does exist in the database, but the Sentry system denies Select rights to the row. - Finally, if you have an SoDataReader that contains ALL the fields of the table, and you have the LogEventsTableInfo instance used in the query behind the reader, you can use the static GetFromReader(SoDataReader, LogEventsTableInfo) method to create a new row object from the reader and the table info. This is useful when you have a larger, more complex query, for instance one that joins a number of tables, and you wish to use Row objects to process the result set. If your result set corresponds to an entity, consider using the corresponding Entity layer object instead, since entities automatically handle ID allocation and mapping, rights, and other higher-level aspects.
Index fields | Nested index class name |
---|